Cem Akin,¹ Cristina Bulai Livideanu,² Mariana Castells,³ Vito Sabato,⁴ Karin Hartmann,⁵,6,7 Mar Guilarte,8 Frank Siebenhaar,9,10 Franziska Rueff,¹¹ Stéphane Barete,¹² Laurence Bouillet,¹³ David González-de-Olano,¹⁴ Ewa Wierzbicka Hainaut,¹⁵ Knut Brockow,¹⁶ Massimo Triggiani,¹⁷ Jonathan A. Bernstein,¹⁸ Caroline Labe,¹⁹ Kevin He,¹⁹ Saranya Venugopal,¹⁹ Javier Muñoz-González,¹⁹ Tracy I. George,^{20,21} Tiago Azenha Rama,^{22,23,24} Thanai Pongdee²⁵

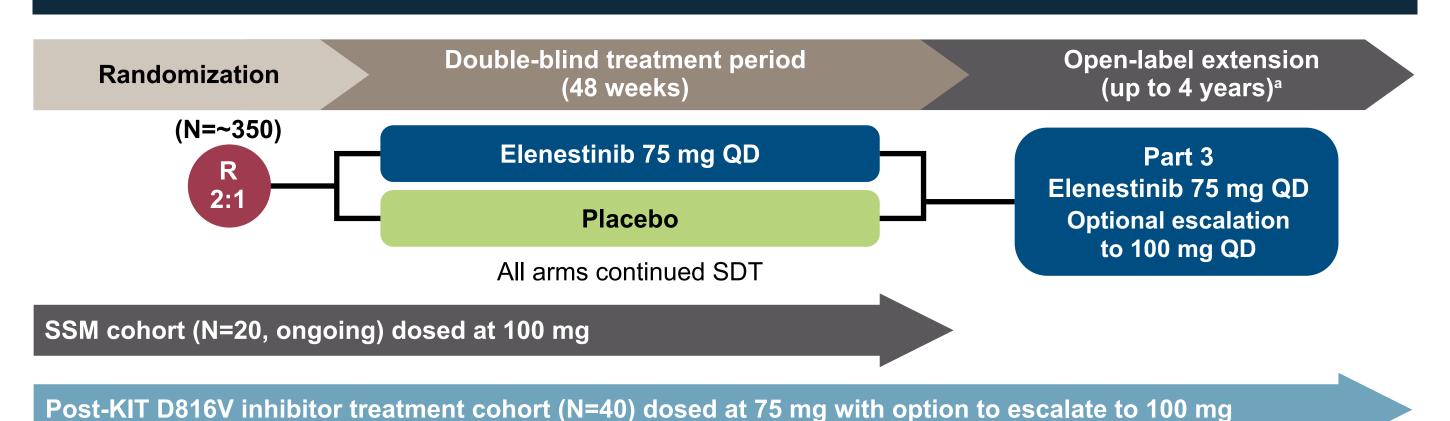
¹University of Michigan, Ann Arbor, MI, USA; ¹Departement de dermatologie, CEREMAST CHU de Toulouse, France; ³Brigham and Women's Hospital Mastocytosis Center, Division of Allergy and Immunology, Allergology, Allergology, University of Antwerp, and Antwerp University Hospital, Antwerp, Belgium; Division of Allergy, Department of Dermatology, University of Basel, Switzerland; Pepartment of Biomedicine, University Hospital Basel and University of Basel, Switzerland; Pepartment of Biomedicine, University of Basel, Switzerland; Pepartment of Biomedicine, University Hospital Basel, Switzerland; Pepartment of Biomedicine, University of Basel, Switzerland; Pepartment of Biomedicine, University of Basel, Switzerland; Pepartment of Biomedicine, University Hospital Basel, Switzerland; Pepartment of Biomedicine, University of Basel, Switzerland; Pepartment of Biomedicine, University of Basel, Switzerland; Pepartment of Biomedicine, University Hospital Basel, Switzerland; Pepartment of Biomedicine, University of Basel, Switzerland; Pepartment of Biomedicine, University Hospital Basel, Base of Allergy, Hospital Universitat Universitat zu Berlin, Germany; 10 Frauchofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany; 12 Unit of Dermatology, Reference Centre for Mastocytosis (CEREMAST), Pitié-Salpêtrière Hospital, AP-HP, Paris, France Hospital, Sorbonne Université, 13 Internal Medicine Department, CHU Grenoble Alpes, Grenoble, France; 14 University Hospital Ramón y Cajal, IRYCIS, Madrid, Spain; 15 University of Salerno; Italy; 18 University of Cincinnati College of Medicine, Cincinnati, OH, USA; 19 Blueprint Medicines Corporation, Cambridge, MA, USA; 20 ARUP Laboratories, Department of Pathology, University of Utah, Salt Lake City, UT, USA; 21 Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA; 22 Unidade Local de Saúde de Matosinhos, Matosinhos, Portugal; ²³Faculty of Medicine of University of Porto, Porto, Porto, Portugal; ²⁴Institute of Public Health of the University of Porto, Porto, Portugal; ²⁵Division of Allergic Diseases, Mayo Clinic, Rochester, MN, USA.

Introduction

- Indolent systemic mastocytosis (ISM) is a clonal mast-cell (MC) disease primarily driven by D816V-mutant KIT in ~95% of cases^{1–3}
- The prevalence of systemic mastocytosis (SM) has been estimated at up to 1 in 5000 people^{4–7}
- ISM is characterized by the accumulation and hyperactivation of aberrant MCs in bone marrow, skin, the gastrointestinal tract, and other organs⁸
- Patients with ISM often experience long-term debilitating symptoms related to release of MC mediators that impact quality of life^{9–12}
- Consequences for patients with ISM include:
- Anaphylaxis, which may occur in 20–50% of patients^{13–15}
- Musculoskeletal complications, including osteoporosis (~25% of patients), osteopenia (~30% of patients), and fragility fractures (~30% lifetime risk), are also common in these patients^{16–18}
- Mastocytosis-typical skin lesions that may be experienced as disfiguring^{10,19}
- Elenestinib is a next-generation, potent, and highly selective KIT D816V inhibitor with limited central nervous system penetration²⁰
- The Phase 2/3 HARBOR trial (NCT04910685) is an ongoing, randomized, double-blind, placebo-controlled study designed to evaluate the efficacy and safety of elenestinib plus symptom-directed therapy (SDT) in patients with ISM and smoldering SM (SSM)
- The safety, tolerability, and efficacy in Part 1 of HARBOR demonstrated a benefit/risk profile that supports the Part 2 and Part 3 design²⁰
- This study will further evaluate the impact of KIT D816V inhibition on symptom improvement, anaphylaxis rates, bone density loss, and disease burden markers such as KIT D816V variant allele frequency, serum tryptase, and bone marrow MCs in patients with ISM and SSM

Key eligibility criteria for enrolling cohorts

Inclusion criteria


- ≥18 years of age
- Eastern Cooperative Oncology Group performance status is 0–2
- Moderate to severe symptoms based on the ISM-SAF mean TSS (Part 2, Post–KIT D816V) inhibitor cohort)
- Centrally confirmed diagnosis of ISM (Part 2, Post–KIT D816V inhibitor cohort) or SSM (SSM cohort) confirmed by central review of B- and C-findings according to WHO diagnostic criteria^{a,21} and failure to achieve adequate symptom control for ≥1 baseline symptoms (Part 2 only)^b
- SDT for ISM symptom management^c must be stable for ≥14 days prior to starting screening procedures (Part 2)

Exclusion criteria

- Patient has been diagnosed with another SM subclassification, including an associated hematologic neoplasm, or C-findings attributable to SM
- Patient has previously received treatment with any selective KIT inhibitors (excluding post-KIT D816V) inhibitor cohort)
- Patient is currently receiving an investigational agent in another interventional study
- Patient has a history of a primary malignancy that has been diagnosed or required therapy within 3 years prior to the study
- TEAEs from previous KIT inhibitors must be resolved to Grade ≤1 prior to the first dose of elenestinib (Post–KIT D816V inhibitor cohort)

^aAn archival biopsy may be used if completed within the past 12 months. ^bUsing ≥2 of the following symptomatic therapies: H1 blockers, H2 blockers, proton-pump inhibitors, leukotriene inhibitors, cromolyn sodium, corticosteroids, omalizumab. ISM, indolent systemic mastocytosis; ISM-SAF, Indolent Systemic Mastocytosis Symptom Assessment Form (©2018 Blueprint Medicines Corporation); SDT, symptom-directed therapy; SM, systemic mastocytosis; SSM, smoldering systemic mastocytosis; TEAE, treatment-emergent adverse event; TSS, total symptom score; WHO, World Health Organization.

Figure 1. Study design

^aUp to a total of 5 years treatment between Parts 2 and 3. QD, once daily; R, randomized.

Figure 2. Study site locations

Norway

Portugal

Spain

Switzerland United Kingdom

Study endpoints

Study sites located in

Europe

Austria

Belgium

France

Germany

Australia

Netherlands

United States

Primary

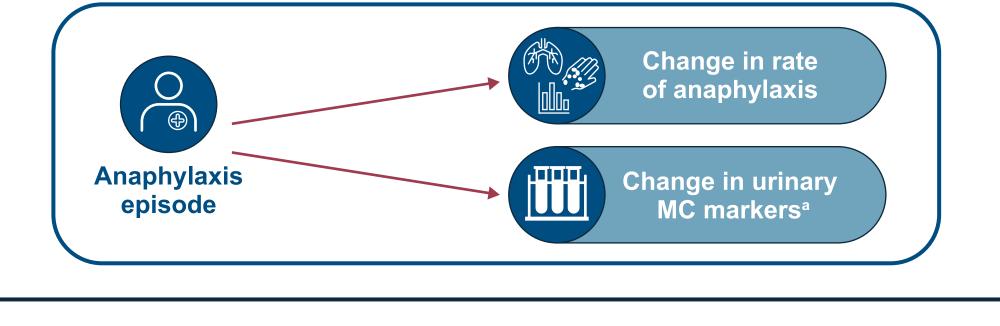
Randomized Part 2

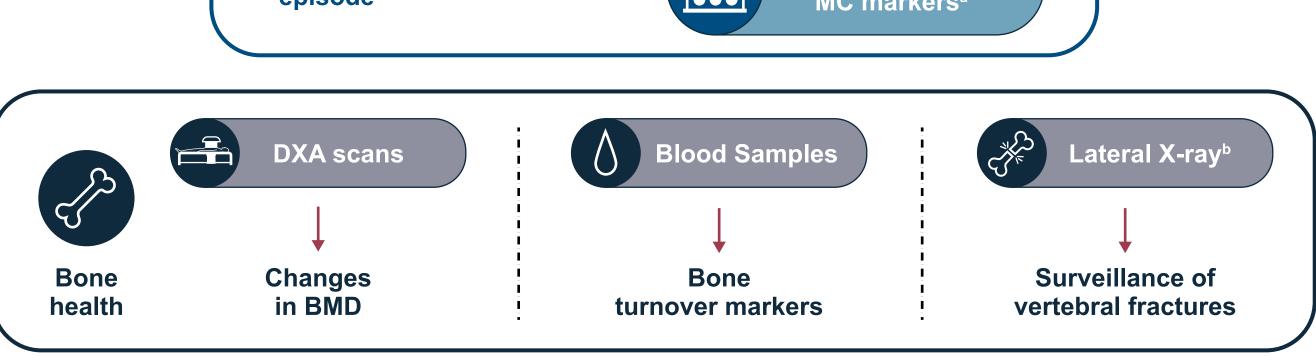
Mean change in ISM-SAF TSS from baseline^a

Open-label Part 3

- Long-term safety and tolerability by determining AEs, SAEs, and lab parameters
- Mean change in ISM-SAF TSS

Secondary and exploratory^a


- Proportion of patients achieving:
- Normalization of tryptase
- Undetectable or ≥50% reduction in KIT D816V VAF
- Controlled disease
- Symptom control as measured by TSS
- Change in quality of life measures
- Change in bone mineral density and bone health
- Change in annualized rate of anaphylaxis


Post-KIT D816V inhibitor and SSM cohorts

- Change in ISM-SAF TSS
- Safety and tolerability determined by AEs, SAEs, and lab parameters
- Change in measures of disease burden including serum tryptase and KIT D816V VAF
- Proportion of patients achieving PPR (SSM cohort only)

^aPart 2 is compared to placebo. Measured after 48 weeks of treatment. Part 3 is open label. AE, adverse event; PPR, pure pathologic response; SAE, serious adverse event; VAF, variant allele frequency.

Measuring anaphylaxis and bone health


^aDuring a possible acute event in US patients only. ^bIn patients with a history of fractures, or who have been identified during screening as having osteopenia or osteoporosis. BMD, bone mass density; DXA, dual-energy X-ray absorptiometry; MC, mast cell.

Summary

- HARBOR Part 2 has been optimized to include:
- Endpoints that evaluate disease modification, including anaphylaxis frequency and bone density, as these will address issues that critically impact the overall health of the patients
- Timing of endpoints that reflect the chronic nature of disease
- HARBOR Part 3 will prospectively evaluate multiple doses, providing dosing flexibility
- HARBOR Part 2 has initiated and there are active sites in the USA, Australia, and 11 countries throughout Europe

To learn more about this clinical trial, scan the QR code:

Conflicts of interest/ disclosures

Dr Akin has received consulting fees and research support from Blueprint Medicines Corporation and Cogent Biosciences, and consulting fees from Novartis.

References

- 1. Kristensen T et al. *Am J Hematol*. 2014;89:493–498.
- 2. Ungerstedt J et al. Cancers. 2022;14:3942. 3. Garcia-Montero AC et al. *Blood*. 2006;108:2366–2372.
- 4. Brockow K. Immunol Allergy Clin North Am. 2014;34: 283-295.
- 5. Cohen SS et al. Br J Haematol. 2014;166:521-528.
- 6. van Doormaal JJ et al. J Allergy Clin Immunol. 2013;131:1429–1431.e1
- 7. Bergström A et al. Acta Oncol. 2024;63:44–50. 8. Rossignol J et al. *F1000Res*. 2019;8 F1000 Faculty Rev-1961.
- 9. Mesa RA et al. Cancer. 2022;128:3691–3699.
- 10. Hermine O et al. *PLoS One*. 2008;3:e2266.
- 11. van Anrooij B et al. *Allergy*. 2016;71:1585–1593.
- 15. Brockow K. *Allergy*. 2008;63:226-232. 16. Degboé Y et al. *Bone*. 2017;105:219–225;
 - 18. Farmer I et al. Presented at BSH 2023. 2023; abstract P032.

12. Akin C et al. *J Allergy Clin Immunol*. 2022;149:1912–1918.

13. Gülen T et al. Immunol Allergy Clin North Am. 2022;42:45-63.

14. Buonomo A et al. Mediterr J Hematol Infect Dis. 2022;14:e2022040.

20. Tashi T et al. Presented at ASH 2023. Oral #76.

17. van der Veer E et al. *Allergy*. 2012; 67:431–438;

- 19. Hartmann K et al. J Allergy Clin Immunol. 2016;137:35–45.
- 21. Khoury JD et al. *Leukemia*. 2022;36:1703–1719
- 22. Sampson HA et al. *J Allergy Clin Immunol*. 2006;117:391–397

Acknowledgements

We thank the patients and their families for making the HARBOR study possible. We also thank the investigators and clinical trial teams who participated in the study. Medical writing support was provided by Akanksha Srivastava, MSc and Travis Taylor, BA, of Paragon (a division of Prime, Knutsford, UK). Funded by Blueprint Medicines Corporation. The sponsor reviewed and provided feedback on the presentation. However, the authors had full editorial control and provided final approval of all content