Treatment With Pralsetinib (BLU-667), a Potent and Selective RET Inhibitor, Provides Rapid Clearance of ctDNA in Patients With RET-Altered Non-Small Cell Lung Cancer (NSCLC) and Thyroid Cancer Giuseppe Curigliano, MD/PhD1, Vivek Subbiah, MD2, Justin F. Gainor, MD3, Dae Ho Lee, MD/PhD4, Matthew H. Taylor, MD5, Viola W. Zhu, MD/PhD6, Robert C. Doebele, MD, PhD7, Gilberto Lopes, MD8, Christina Baik, MD/MPH9, Elena Garralda, MD10, Shirish M. Gadgeel, MBBS11, Dong-Wan Kim, MD12, Christopher D. Turner MD13, Michael Palmer PhD13, and Stephen G. Miller, PhD13 1. European Institute of Oncology, Milan, Italy; 2. The University of Texas MD Anderson Cancer Center, Houston, TX, USA; 3. Massachusetts General Hospital, Boston, MA, USA; 4. University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea; 5. The Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; 6. University of Colorado, Aurora, CO, USA; 8. Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL, USA; 9. University of Washington/Seattle Cancer Care Alliance, Seattle, WA, USA; 10. Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Seoul, Korea; 13. Blueprint Medicines Corporation, Cambridge, MA, USA; 12. Seoul National University Hospital, Seoul, Korea; 13. Blueprint Medicines Corporation, Cambridge, MA, USA ### **BACKGROUND AND METHODS** - RET alterations are targetable oncogenic drivers in multiple tumor types - Approximately 90% of advanced medullary thyroid cancer (MTC) is characterized by single nucleotide variants and short insertions/deletions in the RET gene¹ - Approximately 1–2% of patients with NSCLC and approximately 20% of patients with papillary thyroid cancer (PTC) harbor rearrangements resulting in RET fusions² - No selective RET inhibitors are approved ### Praisetinib: Designed to Treat RET-Altered Cancers Pralsetinib potently and selectively inhibits RET alterations, including those that confer resistance to MKI, while sparing VEGFR.3 | Pralsetinib:
High kinome
electivity for RET | | |---|--| | | | | | Pralsetinib
IC ₅₀ | Cabozantinib
IC ₅₀ | Vandetanib
IC ₅₀ | |------------------------------------|---------------------------------|----------------------------------|--------------------------------| | Wild-type RET | 0.4 | 11 | 4 | | RET V804L
Gatekeeper resistance | 0.3 | 45 | 3597 | | RET V804M
Gatekeeper resistance | 0.4 | 162 | 726 | | RET M918T Mutation | 0.4 | 8 | 7 | | CCDC6-RET Fusion | 0.4 | 34 | 20 | | VEGFR2
Anti-target | 35 | 2 | 4 | more selective for RET than VEGFR2 Pralsetinib is 20-fold more selective for RET than JAK1 IC₅₀, half maximal inhibitory concentration; MKI, multikinase inhibitor; VEGFR, vascular endothelial growth factor receptor a. Kinome illustration reproduced courtesy of Cell Signaling Technology, Inc. (www.cellsignal.com) (CSTI). The foregoing website is maintained by CSTI, and Blueprint MedicinesTM is not responsible for its content ### ARROW: Pralsetinib Dose-Escalation/Expansion Study ### **Dose-escalation (complete)** • Phase 2 dose determined (400 mg QD) ### **Expansion cohorts (ongoing)** - Unresectable, advanced RET fusionpositive NSCLC, thyroid cancer, and other RET-altered solid tumors - RET alteration status by local tumor - No additional driver mutation ### **Primary objectives** - Overall response rate (RECIST 1.1) - Safety ### **Exploratory analysis: RET variant ctDNA** - Early declines in ctDNA may predict for treatment outcome⁴⁻⁷ - Plasma profiled with the Personal Genome Diagnostics PlasmaSELECT™ R64 sequencing panel pharmacologically Pralsetinib is ~90-fold relevant kinases: Results were reported as ctDNA mutant allele fraction (RET mutations) or unique fusion reads (RET fusions) ctDNA, circulating tumor DNA; QD, once-daily dosing; RECIST, response evaluation criteria in solid tumors. ### Praisetinib Has Demonstrated Significant Clinical Activity in RET-Altered Tumors and Has Been Well Tolerateda Most common treatment-related adverse events: constipation, fatigue, hypertension, diarrhea, neutropenia, increased liver enzymes, anemia. Overall rate of treatment discontinuation due to treatment-related toxicity was 4%. Cabo, cabozantinib; DCR, disease control rate (best RECIST 1.1 response of stable disease or better); ORR, objective response rate; PTC, papillary thyroid cancer; vand, vandetanib. a. ARROW study data as of 28 Apr 2019, presented at ASCO 2019.89 b. One patient with PTC and one patient with MTC were pending response confirmation. ### **RESULTS** C2D1, Cycle 2 Day 1 (approximately 8 weeks after initiation of pralsetinib a. Mutations with allele fraction ≥ 40% were considered germline and excluded from post-treatment analyses of ctDNA clearance. ### **Baseline ctDNA Analysis: Multiple RET Variants Detected Across Tumor Types** | | NSCLC
(N=73) | MTC
(N=51) | Other ^a
(N=8) | Total
(N=132) | |--------------------|-----------------|---------------|-----------------------------|------------------| | RET fusion partner | | | | | | KIF5B | 59 | - | - | 59 | | CCDC6 | 12 | - | 4 | 16 | | Other | 11 | - | 2 | 13 | | RET mutation | | | | | | M918T | - | 27 (24/3) | - | 27 (24/3) | | C634F/R/S/W/Y | - | 10 (4/6) | - | 10 (4/6) | | V804L/M | 1 (1/0) | 4 (1/3) | - | 5 (2/3) | | C620R/Y | - | 3 (2/1) | - | 3 (2/1) | | C618R/S | - | 2 (2/0) | - | 2 (2/0) | | D631E/del | - | 1 (0/1) | 1 (0/1) | 2 (0/2) | | Other | 7 (5/2) | 13 (7/6) | 2 (2/0) | 22 (14/8) | | | | | | | Data for mutations shown as total n (somatic n/germ line n). Patients with multiple RET fusions and/or mutations are tabulated in all relevant categories. a. "Other" tumor types: colon cancer (n=3), papillary thyroid cancer (n=3), pancreatic cancer (n=1), and small cell lung cancer (n=1). Presented at the Annual Congress of the European Society for Medical Oncology, 30 Sept 2019, Barcelona, Spain - . Romei, et al. Oncotarget. 2018;9(11):9875–9884. - Santoro, et al. J Clin Invest. 1992:89(5):1517-1522. Subbiah, et al. *Cancer Discov*. 2018;8(7):836–849. - Cabel, et al. *Ann Oncol*. 2017;28(8):1996–2001. Mok, et al. *Clin Cancer Res.* 2015;21(15):3196–3203. Drilon, et al. Nat Rev Clin Oncol. 2018;15(3):151–167. Awad, et al. J Thorac Oncol. 2018;13(7):1037-1042. Gainor, et al. J Clin Oncol. 2019;37(15):2154. 9. Taylor, et al. *J Clin Oncol*. 2019;37(15):6018. We thank the participating patients, their families, all study coinvestigators, research coordinators and data managers who contributed to this study. Third-party writing assistance was provided by Ashfield Healthcare and funded by Blueprint ARROW is registered with clinicaltrials.gov (NCT03037385) ### Pralsetinib is an investigational agent discovered and currently in development by Blueprint Medicines PRESENTING AUTHOR DISCLOSURE: GC has received honoraria from Seattle Genetics, Roche, Novartis, Eli Lilly, Bristol-Myers Squibb, and Pfizer; has served in advisory and consultancy roles for Seattle Genetics, Roche, Novartis, Eli Lilly, Bristol-Myers Squibb, and Pfizer; has given expert testimony for Seattle Genetics, Roche, Novartis, Eli Lilly, Bristol-Myers Squibb, and Pfizer; and has received travel accommodation and funding from Roche and Pfizer. Corresponding author email address: smiller@blueprintmedicines.com Clearance of RET Variants Across a Broad Range of RET Genotypes - After 8 weeks of treatment with pralsetinib, RET ctDNA was undetectable for 90% of patients with NSCLC and 50% of patients with MTC harboring somatic RET mutations - After 8 weeks of treatment with pralsetinib, RET ctDNA was reduced ≥50% for 90% of patients with NSCLC and 83% of patients with MTC harboring somatic RET mutations CRC, colorectal cancer; F, fusion; M, mutation. ### ctDNA Clearance and Clinical Benefit Baseline ctDNA levels correlated with tumor burden in NSCLC (p=0.010) and MTC (p=0.038). Analysis of variance (ANOVA F test) based on ctDNA level, using groups with undetectable ctDNA and 2 (MTC) or 3 (NSCLC) quantiles of those with detectable ctDNA. ### All data are preliminary and based on a data cut-off date of 6 Sept 2019 unless otherwise noted. Corporation (Blueprint Medicines). The ARROW study is sponsored by Blueprint Medicines. ### Copies of this poster obtained through QR (Quick Response) code are for personal use only and may not be reproduced without written permission of the authors. **QR Code Disclaimer** ## Clinical Benefit of Pralsetinib Across RET Genotypes Identified via ctDNA ### NCOA4-RET Fusion: Intrahepatic Bile Duct Cancera - 51-year-old woman with Stage IV disease including liver and bone - Best response of progressive disease to three prior lines of therapy (nab-paclitaxel/gemcitabine/ cisplatin; erlotinib/bevacizumab; osimertinib) - With pralsetinib: - rapid and near-complete clearance of RET - confirmed, ongoing RECIST 1.1 partial response - Continues pralsetinib at 19.6 months ### M918T and Somatic V804L Resistance Mutation: MTC - 53-year-old woman with Stage IV disease including liver and lymph nodes - Best response of stable disease, then progression at 10 months, with prior vandetanib - With pralsetinib: - rapid reductions in CEA and calcitonin - tumor shrinkage evolving to partial response^b - Continues pralsetinib at 6.8 months ### Germline V804L Mutation: MTC^a - 52-vear-old man with Stage IV disease including liver, lung and lymph nodes - Previously received sunitinib with best response - With pralsetinib: - rapid reductions in CEA and calcitonin - clearance of somatic RET D631del mutation - confirmed, ongoing RECIST 1.1 partial - Continues pralsetinib at 17.6 months Pralsetinib treatment-related adverse events were generally grade 1-2 and manageable; all three patients continue treatment. CEA, carcinoembryonic antigen; SD, sum of diameters. a. Patients initially received alternate pralsetinib starting doses in the dose-escalation study portion, and have since transitioned to 400 mg QD. b. Post treatment ctDNA analysis and confirmation of response are pending. ### CONCLUSIONS - Plasma ctDNA analysis can successfully identify a broad array of targetable RET alterations and mutations, including somatic resistance mutations - Treatment with pralsetinib leads to a robust and rapid decline in RET variant ctDNA, regardless of tumor diagnosis or RET alteration genotype - ctDNA clearance occurred in the majority of patients, including patients with durable responses as well as prolonged disease stabilization - Results support pralsetinib as a potent and selective RET inhibitor and are consistent with the broad clinical activity observed with pralsetinib, including high objective tumor response and disease control rates