Poster # P076A

First-in-human study of BLU-554, a potent, highly selective FGFR4 inhibitor designed for hepatocellular carcinoma (HCC) with FGFR4 pathway activation

⁷National Cancer Center Singapore, Singapore; ⁸Blueprint Medicines, Cambridge, Massachusetts, USA, ⁹Asan Medical Center, Seoul, South Korea

Richard Kim¹, Sunil Sharma², Tim Meyer³, Debashis Sarker⁴, Teresa Macarulla⁵, Max Sung⁶, Su Pin Choo⁷, Hongliang Shi⁸, Oleg Schmidt-Kittler⁸, Corinne Clifford⁸, Beni Wolf⁸, Yoon-Koo Kang⁹, Josep Llovet⁶ ¹Moffitt Cancer Center, Tampa, Florida, USA; ²Huntsman Cancer Center, Salt Lake City, Utah, USA; ³UCL Cancer Institute, London, UK; ⁵Vall d'Hebron Institute of Oncology, Barcelona, Spain; ⁶Mount Sinai Medical Center, New York, USA;

Hypothesis and objectives

- · A Phase I study was initiated in advanced HCC to explore the hypothesis that targeting FGFR4 will have the rapeutic benefit in HCC driven by the FGFR4 ligand, FGF19
- The key objectives were to determine the maximum tolerated dose (MTD) and to evaluate the safety, pharmacokinetics (PK), pharmacodynamics (PD) and preliminary anti-tumor activity of BLU-554, an investigational, potent, highly-selective, oral FGFR4 inhibitor

HCC – a worldwide medical need¹

- >700,000 new cases/year; 600,000 deaths/year
- Sorafenib, standard of care for advanced disease, provides a response rate of $\sim 2\%$ and median survival <11 months
- Viral and non-viral etiologies are well known, but molecular drivers are largely undefined; consequently, there are no molecular diagnostics to guide patient care

FGF19 identified as a potential HCC driver^{1–5}

- ~5% of HCCs have genomic amplification of the FGF19/CCND1 locus (Immunohistochemistry [IHC]+ Fluorescent In Situ Hybridization [FISH]+)
- ~25% of HCCs overexpress FGF19 in the absence of genomic amplification (IHC+ FISH-)
- Transgenic overexpression of FGF19 causes HCC in mice

HBV, hepatitis B virus; HCV, hepatitis C virus; NASH, non-alcoholic steatohepatitis

- Normal liver does not express FGF19, but expresses high levels of FGFR4 and klotho-beta (KLB). FGF19 produced by the ileum acts in an endocrine fashion on the liver to initiate signaling (left panel)
- HCC retains high levels of FGFR4/KLB and remains poised to bind FGF19. Aberrant FGF19 expression in HCC promotes autocrine signaling (right panel)

Methods

- Patients were given BLU-554 orally, once daily (QD) on a 4-week cycle following a 3+3 design. Adverse events (AEs), PK and PD were assessed. Baseline tumor FGF19 expression was analyzed via IHC as a marker of pathway activation. FISH was assessed retrospectively. Response was determined by RECIST 1.1 every 8 weeks
- All data are preliminary and based on a cut-off of November 7, 2016

Characteristic, n (%)	Total (N=25)	Characteristic
Mean age, years (range)	61 (19–81)	FGF19 FISH
Gender		FISH+
Male	19 (76)	FISH-
Etiology		Unknown
Non-viral	4 (16)	Prior therapy
HBV	8 (32)	Surgical rese
HCV	4 (16)	Radiotherap
Other/unknown	9 (36)	TACE/embo
Metastatic disease		Kinase inhib
Yes	17 (68)	Sorafenib
FGF19 IHC		Systemic the
IHC ≥1% (IHC+)	10 (40)	
IHC <1% (IHC-)	10 (40)	
Unknown	5 (20)	

*CN=4, low level copy number gain; TACE, transarterial chemoembolization

Anemia 5 (20) 5 (20) ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase

 \square \square \square \square \square

140 mg 280 mg 420 mg 600 mg 900 mg

140 mg 280 mg 420 mg 600 mg 900 mg

1. Llovet JM et al (2016) Nature Reviews Disease Primers 2: 1–23; 2. Moeini A et al (2016) Hepatology 64: 601–810 Abstract #1240; 3. Nicholes K et al (2002) Am J Pathol 160: 2295–07; 4. Potthoff MH et al (2012) Genes & Development 26: 312–324; 5. Hagel M et al (2015) Cancer Discovery 5: 424–37; 6. Gavine PR et al (2012) Cancer Res: 72:2045; 7. Guagnano V et al (2011) J Med Chem: 54:7066; 8. Kinome illustration reproduced courtesy of Cell Signalling Technology inc. www.cellsignal.com

