GIST: imatinib and beyond Clinical activity of BLU-285 in advanced gastrointestinal stromal tumor (GIST)

<u>Michael Heinrich¹</u>, Robin Jones², Margaret von Mehren³, Patrick Schoffski⁴, Sebastian Bauer⁵, Olivier Mir⁶, Philippe Cassier⁷, Ferry Eskens⁸, Hongliang Shi⁹, Terri Alvarez-Diez⁹, Oleg Schmidt-Kittler⁹, Mary Ellen Healy⁹, Beni Wolf⁹, Suzanne George¹⁰

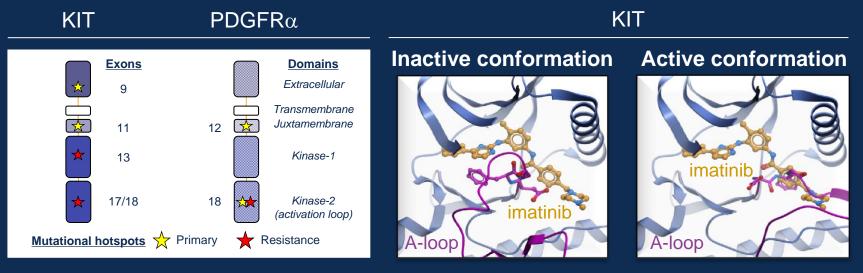
¹Oregon Health & Sciences University, Oregon, USA; ²Royal Marsden Hospital/Institute of Cancer Research, London, UK; ³Fox Chase Cancer Center, Pennsylvania, USA; ⁴Leuven Cancer Institute, Leuven, Belgium; ⁵University of Essen, Essen, Germany; ⁶Institut Gustave Roussy, Paris, France; ⁷Centre Leon Berard, Lyon, France; ⁸ Erasmus MC Cancer Institute, Rotterdam, Netherlands; ⁹Blueprint Medicines Corporation, Massachusetts, USA; ¹⁰Dana-Farber Cancer Institute, Massachusetts, USA

Abstract no: 11011

Presented by: Dr. Michael Heinrich

#ASCO17

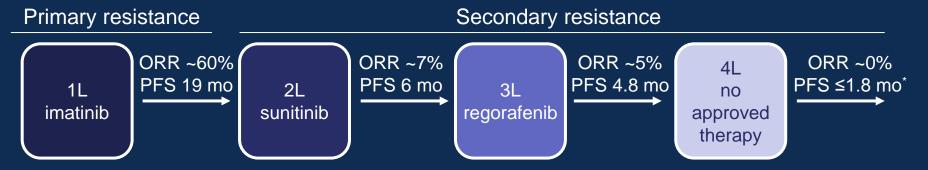
Slides are the property of the author. Permission required for reuse


ASCO ANNUAL MEETING '17

Disclosures

- BLU-285 is an investigational agent currently in development by Blueprint Medicines Corporation (Blueprint Medicines)
- Dr. Michael Heinrich is an investigator for Blueprint Medicines' ongoing Phase 1 studies in unresectable gastrointestinal stromal tumor
- Dr. Michael Heinrich has the following disclosures:
 - Consultant: Blueprint Medicines, Novartis, MolecularMD
 - Equity interest: MolecularMD
 - Research funding: Blueprint Medicines, Deciphera, Ariad
 - Expert testimony: Novartis
 - Patents: four patents on diagnosis and treatment of PDGFR α -mutant GIST

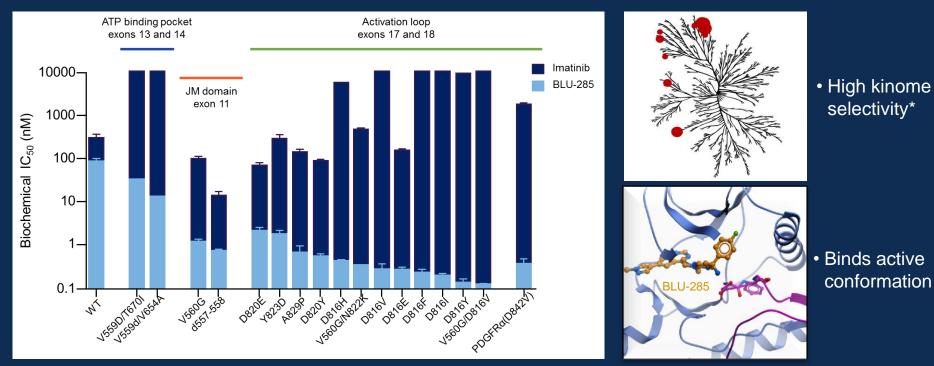
2


Imatinib revolutionized Gastrointestinal Stromal Tumor (GIST) treatment

- KIT mutations drive ~75–80% of GIST
- PDGFR α mutations drive ~5–10% of GIST
- Imatinib binds the inactive kinase conformation and inhibits many primary mutants
- Imatinib is a highly effective first-line GIST therapy

RESENTED AT: ASCO ANNUAL MEETING '17 | #ASCO17

Beyond imatinib, there are no highly effective therapies^{1–6}

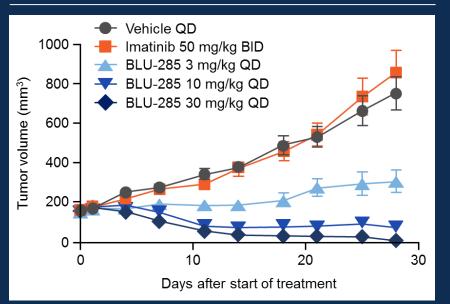

	Prevalence ^{7,8}		
Resistance mutation	Primary	Secondary	
PDGFRα D842V	~5–6%	Rare	
KIT exon 17/18	~1%	2L ~23% ≥3L ~90%	
KIT exon 13	N/A	2L ~40%	

- Primary and secondary mutations cause therapeutic resistance
- Approved agents are ineffective against PDGFRα D842V

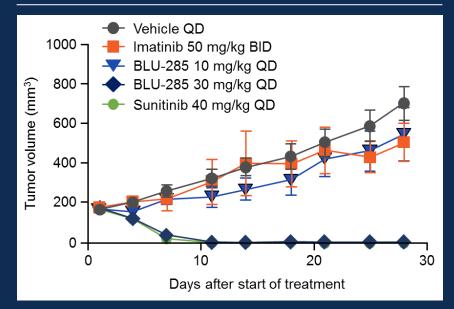
*Imatinib re-challenged

PRESENTED AT: ASCO ANNUAL MEETING '17 | #ASCO17

BLU-285: highly potent and selective targeting of KIT/PDGFR α GIST mutants


5

*Image reproduced courtesy of CSTI (www.cellsignal.com)

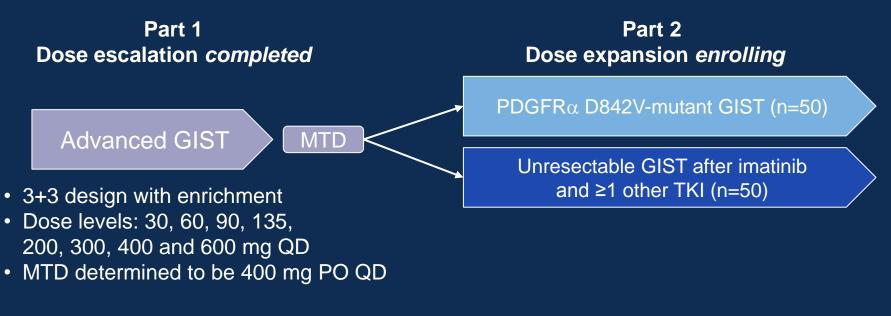

BLU-285: highly active against imatinib-resistant GIST patient derived xenografts

KIT exon 11/17 mutant

KIT exon 11/13 mutant

Tumor regression at 10 and 30 mg/kg QD

Tumor regression at 30 mg/kg QD

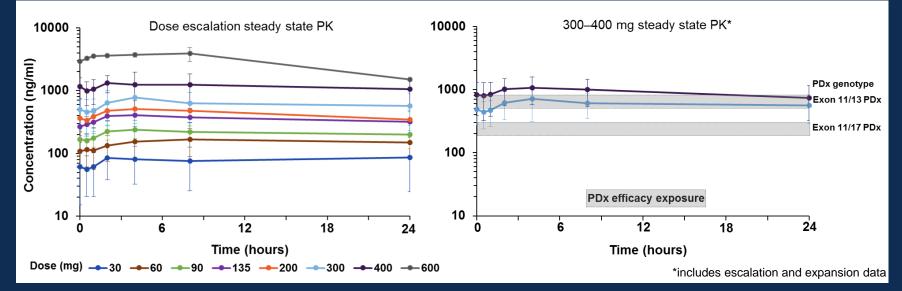

6

PRESENTED AT: ASCO ANNUAL MEETING '17 #ASCO17

BLU-285 Phase 1 study

Key objectives

- Part 1: MTD, safety, pharmacokinetics, ctDNA analyses, anti-tumor activity
- Part 2: response rate, duration of response, safety


Demography and baseline patient characteristics

Parameter	All patients, N=72		
Age (years), median (range)	61 (25–85)		
	n (%)		
GIST subtype KIT mutant PDGFRα mutant	40 (56) 32 (44)		
Metastatic disease	69 (96)		
Largest target lesion size (cm) ≤5 >5–≤10 >10	18 (25) 25 (35) 29 (40)		
No. prior kinase inhibitors Median (range) ≥3 Prior regorafenib	<u>PDGFRα</u> 1.5 (0–6) 10 (31) 8 (25)	<u>KIT</u> 4 (2–11) 36 (90) 34 (85)	

8

Data are preliminary and based on a cut off date of 28 April 2017

BLU-285 pharmacokinetics support QD dosing and broad mutational coverage

9

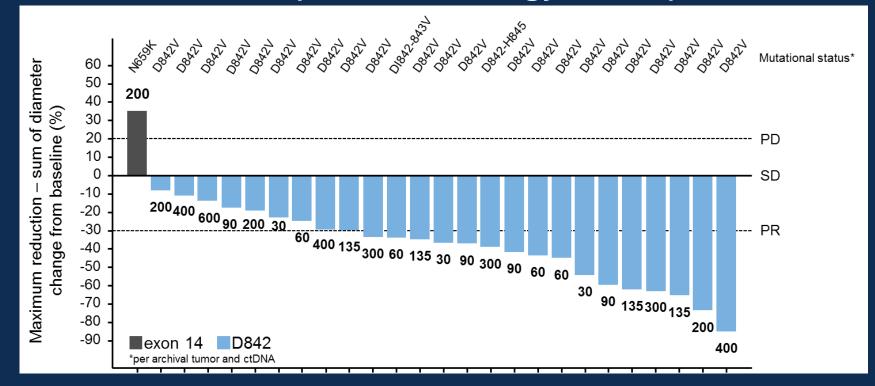
- Relatively rapid absorption Tmax ~2–8 hours and long half-life >24 hours
- Exposure at the 300 and 400 (MTD) mg provides broad coverage of primary and secondary KIT/PDGFR α mutations based on patient derived xenografts (PDX)

PRESENTED AT: ASCO ANNUAL MEETING '17 | #ASCO17

Radiographic response per RECIST 1.1 in PDGFRα D842V-mutant GIST

BLU-285 300 mg (dose escalation)

BLU-285 400 mg (dose expansion)


- Ongoing at cycle 5
- Prior imatinib and sunitinib
- Confirmed PR, -63% target sum

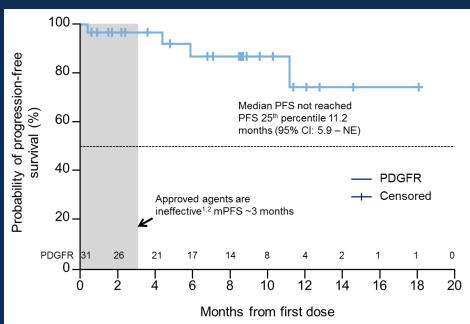
- Ongoing at cycle 3
- Prior imatinib
- PR (pending confirmation), -85% target sum

10

PRESENTED AT: ASCO ANNUAL MEETING '17 | #ASCO17

Tumor regression across all dose levels in PDGFRα D842-mutant GIST (central radiology review)

11

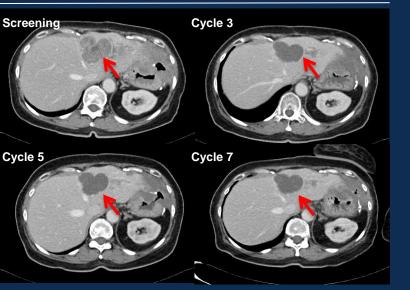

High response rate and prolonged PFS in PDGFRα D842-mutant GIST

Central radiographic review

Best response (N=25)	Choi Criteria n (%)	RECIST 1.1 n (%)	
PR	25 (100%)	15* (60%)	
SD	0	10 (40%)	
DCR (PR + SD)	25 (100%)	25 (100%)	
PD	0	0	

* 12 confirmed, 3 pending confirmation

Approved agents are ineffective^{1,2}
ORR ~0%



PRESENTED AT: ASCO ANNUAL MEETING '17 #ASCO17 Slides are the property of the author. Permission required for reuse.

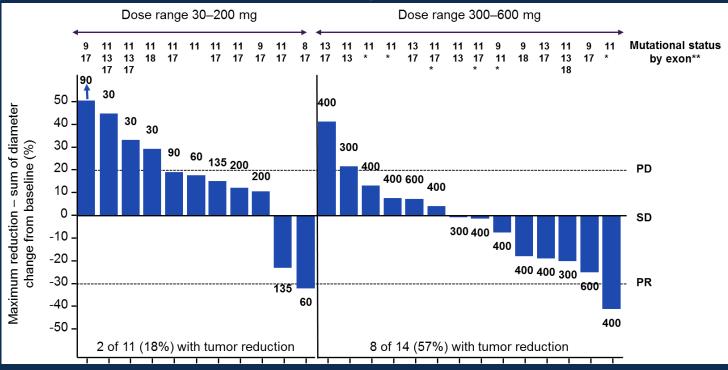
12

Radiographic response in heavily pre-treated KIT-mutant GIST

BLU-285 300 mg (dose escalation)

- Ongoing at cycle 12
- 6 prior TKIs; exon 11, 13, and 18 mutations
- CHOI PR (density -53%); RECIST SD (-21%)

BLU-285 400 mg (dose expansion)


- Ongoing at cycle 4
- 5 prior TKIs; 1° exon 11 mutation; ctDNA pending

13

• CHOI PR (density -76%); RECIST PR (-41%)

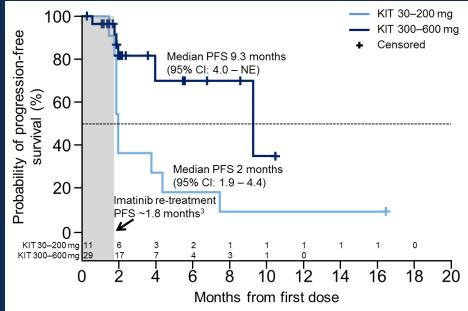
PRESENTED AT: ASCO ANNUAL MEETING '17 | #ASCO17

Dose-dependent tumor reduction across multiple KIT genotypes (central radiographic review)

*ctDNA results pending

**per archival tumor and ctDNA

Important clinical activity in heavily pre-treated KIT-mutant GIST


Central radiographic review

Best response (N=25)	Choi Criteria n (%)	RECIST 1.1 n (%)	
PR	8 (32)	2* (8)	
SD	6 (24)	12 (48)	
DCR (PR + SD)	14 (56)	14 (56)	
PD	11 (44)	11 (44)	

* 1 confirmed, 1 pending confirmation

- Beyond third-line regorafenib there are no approved therapies
 - Imatinib re-treatment in ≥third-line GIST³
 - ORR ~0%

Adverse events (AE) associated with BLU-285

Safety population, N=72		Severity, n (%)			
AEs in ≥20% of patients	n (%)	Grade 1	Grade 2	Grade 3	Grade 4/5
Nausea	43 (60)	31 (43)	9 (13)	3 (4)	0
Fatigue	38 (53)	16 (22)	16 (22)	6 (8)	0
Vomiting	30 (42)	21 (29)	6 (8)	3 (4)	0
Periorbital edema	26 (36)	22 (31)	4 (6)	0	0
Diarrhea	24 (33)	19 (26)	4 (6)	1 (1)	0
Edema peripheral	22 (31)	18 (25)	4 (6)	0	0
Decreased appetite	20 (28)	15 (21)	4 (6)	1 (1)	0
Anemia	18 (25)	4 (6)	8 (11)	6 (8)	0
Lacrimation increased	17 (24)	12 (17)	5 (7)	0	0
Dizziness	16 (22)	13 (18)	3 (4)	0	0

- 18 (25%) patients had Grade (G) ≥3 treatment-related (Fatigue [8%], hypophosphatemia [6%], anemia [4%], nausea, vomiting, hyperbilirubinemia [3% each])
- DLT in 2 patients at 600 mg: 1 G2 hyperbilirubinemia; 1 G2 rash, hypertension, memory impairment
- BLU-285 discontinuations: disease progression n=19, treatment-related toxicity (G3 hyperbilirubinemia) n=1, and investigator's decision n=1

Conclusions

- BLU-285 is well tolerated on a QD schedule at doses up to the MTD of 400 mg
- Exposure at 300–400 mg QD provides broad coverage of primary and secondary KIT / PDGFR $\!\alpha$ mutants
- BLU-285 has strong clinical activity in PDGFR α D842-mutant GIST with an ORR of 60% per central review and median PFS not reached
 - Potential expedited paths for approval are being evaluated
- BLU-285 demonstrates important anti-tumor activity including radiographic response and prolonged PFS in heavily pre-treated, KIT-mutant GIST at doses of 300–400 mg QD
 - Based on these encouraging data, planning is underway for a Phase 3 randomized study of BLU-285 in third-line GIST

Acknowledgments

We thank the participating patients, their families, all study co-investigators, and research coordinators at the following institutions:

- Oregon Health & Sciences University
- Royal Marsden Hospital/Institute for Cancer Research
- Leuven Cancer Institute
- University of Essen
- Fox Chase Cancer Center
- Erasmus MC Cancer Institute
- Centre Leon Berard
- Institut Gustave Roussy
- Dana-Farber Cancer Institute

We also thank Sarah Jackson, PhD, of iMed Comms, an Ashfield company, who provided editorial writing support funded by Blueprint Medicines

References

- 1. Cassier et al. Clin Cancer Res. 2012;18(16):4458-64
- 2. Yoo et al. Cancer Res Treat. 2016;48(2):546–52
- 3. Kang et al. *Lancet Oncol.* 2013;14(12):1175–82
- 4. National Comprehensive Cancer Network. Gastrointestinal Stromal Tumors. 2016
- 5. Demetri et al. Lancet. 2006;368:1329
- 6. Demetri et al. Lancet. 2013;381:295-302
- 7. Corless et al. J Clin Oncol. 2005;23:5357
- 8. Barnett and Heinrich. Am Soc Clin Onc Ed Book. 2012;663