Preliminary safety and activity in a first-in-human Phase 1 study of BLU-285, a potent, highly selective inhibitor of KIT and PDGFRα activation loop mutants in advanced gastrointestinal stromal tumor (GIST)

Michael Heinrich¹, Robin Jones², Patrick Schoffski³, Sebastian Bauer⁴, Margaret von Mehren⁵, Ferry Eskens⁶, Philippe Cassier⁷, Olivier Mir⁸, Hongliang Shi⁹, <u>Terri Alvarez-Diez⁹, Mary Ellen Healy⁹, Beni Wolf⁹, Suzanne George¹⁰</u>

¹Oregon Health & Sciences University, Oregon, USA; ²Royal Marsden Hospital/Institute of Cancer Research, London, UK; ³Leuven Cancer Institute, Leuven, Belgium; ⁴University of Essen, Essen, Germany; ⁵Fox Chase Cancer Center, Pennsylvania, USA; ⁶Erasmus MC Cancer Institute, Rotterdam, Netherlands; ⁷Centre Leon Berard, Lyon, France; ⁸Institut Gustave Roussy, Paris, France; ⁹Blueprint Medicines Corporation, Massachusetts, USA; ¹⁰Dana-Farber Cancer Institute, Massachusetts, USA

> EORTC-NCI-AACR Molecular Targets and Cancer Therapeutics Symposium, Munich, Germany, 01 Dec 2016

Disclosures

- BLU-285 is an investigational agent currently in development by Blueprint Medicines Corporation (Blueprint Medicines)
- Dr. Michael Heinrich is an investigator for Blueprint Medicines' ongoing Phase 1 study in unresectable gastrointestinal stromal tumor
- Dr. Michael Heinrich has the following disclosures:
 - Consultant: Blueprint Medicines, Novartis, MolecularMD
 - Equity interest: MolecularMD
 - Research funding: Blueprint Medicines, Deciphera, Ariad
 - Expert testimony: Novartis
 - Patents: four patents on diagnosis and treatment of PDGFRα-mutant GIST

Gastrointestinal Stromal Tumor (GIST)

- Cancer of the interstitial cells of Cajal
- Primary tumor usually presents as a stomach or intestinal mass
- Metastatic recurrences spread to liver, peritoneum, and other distant sites
- Chemotherapy has no impact

Activating RTK mutations drive metastatic GIST KIT ~ 80% **PDGFR** $\alpha \sim 8\%$

- Primary mutational hotspots 🛠
 - KIT Exons 9 or 11
 - PDGFRa D842V Exons 12 and 18
- Resistance mutations
 - KIT Exons 13 and 17
 - PDGFRα D842V Exon 18

GI, gastrointestinal; JM, juxtamembrane; KIT, receptor tyrosine kinase protein; PDGFRa, platelet-derived growth factor receptor; RTK, receptor tyrosine kinase; TM, transmembrane Barnett & Heinrich (2012) Am Soc Clin Oncol Educ Book;663; Nowain et al (2005) J Gastroen Heptol;20:818; Dematteo et al (2000) Ann Surg;231:51; Plumb et al (2013) Clin Radiol;68:770; Joensuu (2006) 17 Suppl 10:x280

3

Advanced GIST has high medical need

	Prevalence		
Resistance mutation	Primary	Secondary	
KIT Exon 17	~ 1%	2L ~ 20% 3L ~ 90%	
PDGFRα D842V	~ 5-6%	rare	

- Activation loop mutations are associated with resistance to therapy
- Approved agents are ineffective against PDGFRα D842V
 - ORR ~ 0%
 - mPFS ~ 3 months

mPFS, median progression-free survival; ORR, objective response rate; PFS, progression-free survival Cassier (2012) CCR; 18:4458; Yoo (2016) Can Res Treat; 48:546; Corless (2005) JCO; 23:5357; Barnett and Heinrich (2012) Am Soc Clin Onc Ed Book: 663; Demetri (2006) Lancet; 368:1329; Demetri (2013) Lancet; 381:295-302

BLU-285 is a highly potent and selective inhibitor of KIT and PDGFR α activation loop mutants

BID, twice daily; IC₅₀, half maximal inhibitory concentration; PDX, patient derived xenograft; QD, once daily Kinome illustration reproduced courtesy of Cell Signaling Technology, Inc. (www.cellsignal.com)

Tumor regression in

*del556-558/Y823D

BLU-285 Phase 1 study

- Primary objectives determine the MTD and RP2D, and assess safety and tolerability
- Secondary objectives PK, mutational status, anti-tumor activity

MTD, maximum tolerated dose; PK, pharmacokinetics; RP2D, recommended Phase 2 dose; TKI, tyrosine-kinase inhibitor NCT02508532

Demography and baseline patient characteristics

Parameter	All patients, N = 36
Age (years), median (range)	61 (41 – 77)
	n (%)
GIST subtype KIT mutant PDGFRα mutant	18 (50) 18 (50)
Metastatic Disease	35 (97)
Largest target lesion size (cm) ≤ 5 $> 5 - \leq 10$ > 10 pending	8 (22) 12 (33) 14 (39) 2 (6)
#Prior TKI, median (range) ≤ 2 > 2	3.5 (0 – 12) 12 (33) 24 (67)

Data are preliminary and based on a cut off date of 1 November 2016

7

Initial dose escalation results

	Patients	with	unresectable	GIST
--	----------	------	--------------	------

- Prior imatinib and ≥ 1 TKI
- PDGFR α D842 mutation regardless of prior therapy
- 3 + 3 dose escalation with additional accrual to dose levels declared safe at a dose escalation meeting
- 36 patients enrolled over 12 months
- MTD has not been reached

BLU-285 mg/day	Patients treated by dose N = 36
30	3 + 2 enrichment
60	3 + 3 enrichment
90	3 + 3 enrichment
135	3 + 3 enrichment
200	3 + 2 enrichment
300	3 + 1 enrichment
400	4

- 75% (n=27) of patients remain on treatment, range 0.8 12.3 months
- All PDGFRα patients remain on treatment
- 9 patients off treatment (all due to progressive disease)

BLU-285 pharmacokinetics support once daily dosing

- Half-life > 24 hour, supporting QD dosing
- Relatively rapid absorption: T_{max} ~ 2 8 hr
- Accumulation in plasma: 2.5 4.7 -fold after 15 days
- Exposure at 300 mg is at low end of predicted therapeutic range based on KIT Exon 17 mutant xenograft studies

C1D1, Cycle 1 Day 1; C1D15, Cycle 1 Day 15; T_{max}, time at which C_{max} is observed; QD, once daily

Radiographic response per RECIST 1.1 in PDGFR α D842V GIST (dose level 1, 30 mg)

- 65 yo female, Primary Gastric GIST, PDGFRα D842V
 - Previous surgical de-bulking: stomach; peritoneal metastases x 2; colon
 - Prior response to crenolanib followed by progression
 - Progression on prior dasatinib (no response)
 - Ongoing at Cycle 13 with confirmed partial response (-52% per RECIST 1.1)

Strong clinical activity against PDGFR α D842-mutant GIST at all dose levels

The values above/below the bars denote the dose level (mg) QD received by each patient SD, stable disease; PD, progressive disease; PR, partial response

Radiographic response per RECIST 1.1 in heavily pretreated KIT Exon 11/17 GIST (dose level 4, 135 mg)

After 24 weeks, partial response (-62%)

• 57 year old male, KIT Exon 11 (delWK557-8)/Exon 17 (D816V) mutations

- Prior imatinib, sunitinib, nilotinib, sorafenib, imatinib + BKM120
- Ongoing at Cycle 8 with confirmed partial response per RECIST 1.1

KIT GIST - early dose-response relationship

NB: The values above/below the bars denote the dose level (mg) QD received by each patient

Best radiographic response with BLU-285 per RECIST 1.1

Best response (per investigator)	PDGFRα N=15 n (%)	KIT N=13 n (%)	Total N=28 n (%)
PR	6 (40)	1 (8)	7 (25)
SD	9 (60)	6 (46)	15 (54)
DCR (PR +SD)	15 (100)	7 (54)	22 (79)
PD	0	6 (46)	6 (21)

• Of 7 partial responses, 6 confirmed; 1 pending (still on treatment)

Adverse events associated with BLU-285

- No DLTs or treatment-related Grade 4 5 AEs
- No patient discontinued BLU-285 due to treatment-related toxicity
- 11 (31%) patients had Grade 3 or higher AEs; of these, 3 were considered treatment-related:
 - 1 patient with Grade 3 nausea and vomiting
 - 1 patient with Grade 3 anemia and intratumoral hemorrhage
 - 1 patient with Grade 3 hypophosphatemia
- AEs occurring in $\geq 20\%$ of patients
 - Nausea (42%)
 - Vomiting (33%)
 - Peripheral edema (31%)
 - Fatigue (28%)
 - Constipation (22%)

- BLU-285 has been well tolerated on a QD schedule at doses of 30 400 mg
- Half-life > 24 hours, supports QD dosing
- BLU-285 demonstrates strong clinical activity in PDGFRα D842-mutant GIST at all dose levels
- Significant anti-tumor activity in TKI-resistant, KIT-mutant GIST observed at doses ≥ 135 mg with tumor reduction in 4 of 6 patients, including 1 PR
- Dose escalation continues with the goal of maximizing clinical activity in KITmutant GIST and to define the MTD and RP2D
- Anticipate initiation of expansion cohorts in first half of 2017

Acknowledgments

- We thank the participating patients, their families, all study co-investigators, and research coordinators at the following institutions:
 - Oregon Health & Sciences University
 - Royal Marsden Hospital/Institute for Cancer Research
 - Leuven Cancer Institute
 - University of Essen
 - Fox Chase Cancer Center
 - Erasmus MC Cancer Institute
 - Centre Leon Berard
 - Institut Gustave Roussy
 - Dana-Farber Cancer Institute