BLU-285: A potent and highly selective inhibitor designed to target malignancies driven by KIT and PDGFRα mutations

Erica Evans Ph.D.

New Drugs on the Horizon
2017 AACR Annual Meeting
April 2, 2017

Disclosures

- Employee and shareholder of Blueprint Medicines
- BLU-285 is an investigational agent currently in development by Blueprint Medicines

Activating mutations in KIT and PDGFRα are disease drivers

KIT and PDGFRa

- Highly-related class III receptor tyrosine kinases
- Kinase activity normally requires ligand-induced dimerization
- PDGFRα activity: organogenesis, angiogenesis, vascular integrity
- KIT activity: hematopoeisis, melanocytes, germ cells

Mutation	Disease
PDGFRα Fusion	MDS, MPN, Eosinophilic leukemia
PDGFRα Exon 12	GIST
PDGFRα Exon 18	GIST
KIT Exon 9	GIST
KIT Exon 11	GIST, Melanoma
KIT Exon 13	GIST, Melanoma
	imatinib-resistant GIST
KIT Exon 17	Systemic Mastocytosis
	Acute Myeloid Leukemia
	Germ Cell Tumors
	imatinib/sunitinib-resistant GIST

KIT activation loop mutations abrogate type II inhibitor binding *Imatinib binds inactive conformation of KIT/PDGFRα*

Inactive conformation

Activation loop closed, DFG-out

Type II inhibitors active

Active conformation
Activation loop open, DFG-in
Type II inhibitors inactive

Annotated library highlights type 1 inhibitor activity on KIT exon 17 and exon 11 activating mutations

UNIQUE KINASE-DIRECTED COMPOUND LIBRARY

- Designed to balance novelty, potency, selectivity
- Broad and deep kinome coverage
- High quality, differentiated medicinal chemistry starting points fully annotated across human kinome

BLU-285 is a potent type 1 KIT/PDGFRα inhibitor that binds to the active conformation of the kinase

Imatinib Activation loop open **BLU-285**

[chemical structure for BLU-285 removed]

[chemical structure for BLU-285 removed]

BLU-285 Activation loop open

BLU-285 is a potent, highly selective inhibitor of KIT and PDGFR α activation loop mutants

	Activ	Activation loop		
	Exon 18	Exon 17	Exon 11/17	_
Compound	PDGFRα D842V IC ₅₀ nM	KIT D816V IC ₅₀ nM	KIT V560G/D816V IC ₅₀ nM	
BLU-285	0.24	0.27	0.10	
imatinib	759	8150	6145	
sunitinib	120	207	97.2	Type II inhibitors
regorafenib	810	3640	1685	
midostaurin	4.9	2.8	1.4	Non coloctive Type Linkibiters
crenolanib	0.2	1.5	1.2	Non-selective Type I inhibitors

BLU-285 potently inhibits a broad spectrum of disease relevant KIT mutants

BLU-285 inhibits a broad spectrum of disease relevant KIT mutants more potently than imatinib

BLU-285 biochemical activity is recapitulated in cells

				P-KIT inhibition	IC ₅₀ (nM)
Э	KIT mutation	Exon	Tissue	BLU-285	Imatinib
	Wild type	-	human megakaryoblastic leukemia	192	336
	V560G	11	human mast cell leukemia	100	31
	N822K	17	human acute myeloid leukemia	40	126
	D816Y	17	murine mastocytoma	22	1235.6
	V560G/D816V	11/17	human mast cell leukemia	4	9143.5
	PDGFRα D842V	18	engineered	30	3145
•					30

BLU-285 is active in a primary activation loop mutant in vivo model

KIT Exon 17-driven P815 mastocytoma allograft:

- Mutation in KIT exon 17 equivalent to human KIT D816Y
- Tumor regression observed with 10 and 30 mg/kg BLU-285 once daily, oral dosing
- BLU-285 well tolerated at all doses

BLU-285 is active in imatinib-resistant GIST PDX models

Tumor Growth
Exon 11/17 mutant GIST PDX

Tumor Growth Exon 11/13 mutant GIST PDX

KIT Exon 11/17 mutant (del556-558/Y823D) GIST PDX:

- Tumor regression observed with 10 and 30 mg/kg BLU-285 KIT Exon 11/13 mutant (V559D/V654A) GIST PDX:
- Tumor regression observed with 30 mg/kg BLU-285

BLU-285 is active in a primary exon 11 mutant GIST PDX model

KIT Exon 11 mutant (del557-559insF) GIST PDX:

Days after the start of treatment

- Tumor regression observed with 30 mg/kg BLU-285, stasis with 10 mg/kg BLU-285 once daily, oral dosing
- BLU-285 active against primary KIT exon 11 mutants, suggests reemergence of primary clone is unlikely
- Collaboration with P. Schoffski, (KU Leuven) Abstract #687 Monday April 3, 1-5pm.

BLU-285 Achieves Rapid Clinical Proof of Concept in Diseases Driven by KIT/PDGFRα Mutants

KIT D816V is a key driver in 90-95% of systemic mastocytosis

 Advanced systemic mastocytosis is a rare and severe disease that shortens life expectancy with a wide range of debilitating symptoms and organ damage

Blood

Bone and bone marrow

Osteolytic bone lesions Cytopenias

Liver and Spleen

Liver function abnormalities, Ascites, or Hypersplenism

GI tract

Hypoalbuminemia Weight loss

Skin

Urticaria pigmentosa

C-findings

Encouraging clinical activity in phase 1 AdvSM study Objective decreases in mast cell burden and serum tryptase

Decreased bone marrow mast cells in 6 of 8 patients

Decreased serum tryptase in 10 of 12 patients

Data cut-off date: November 11, 2016

Drummond et al. 2016 ASH Annual Conference

Molecular response observed in blood and bone marrow of SM patients treated with BLU-285

Droplet digital PCR with allele specific primers measures KIT D816V allele burden in blood and BM aspirate

Activating KIT or PDGFRα mutations drive metastatic GIST

Most common GI sarcoma

- Cancer of the interstitial cells of Cajal
- Chemotherapy has no impact

KIT ~ 80% **PDGFR**α ~ 8%

- Primary mutational hotspots
 - KIT Exons 9 or 11
 - PDGFR α Exons 12 and 18 (D842V)
- Resistance mutations *
 - KIT Exons 13 and 17
 - PDGFR α Exon 18 (D842V)

Radiographic response per RECIST 1.1 in PDGFRα D842V GIST in phase 1 testing (dose level 1, 30 mg)

WEEK 8: PARTIAL RESPONSE(-42% per RECIST1.1)

Rapid PDGFRα D842V ct-DNA decline

- 65 year old female, Primary Gastric GIST, PDGFRα D842V
 - Previous surgical de-bulking: stomach; peritoneal metastases x 2; colon
 - Prior response to crenolanib followed by progression
 - Progression on prior dasatinib (no response)
 - Ongoing at Cycle 13 with confirmed partial response (-52% per RECIST1.1)

Heinrich et al. 2016 EORTC-NCI-AACR Conference

Strong clinical activity against PDGFR α D842-mutant GIST at all dose levels

Imatinib/sunitinib-resistant GIST are enriched for KIT exon 17 mutants

Significant anti-tumor activity in TKI-resistant KIT-driven GIST at higher doses

BLU-285 demonstrates dose dependent human pharmacokinetics PDX studies suggest clinical exposures in therapeutic range

BLU-285 Plasma Concentration (steady state)

With C_{min} resulting in PDX tumor regression*

- PDX data suggest active dose range for KIT mutant GIST at levels ≥ 135 mg
- Expansion cohorts for GIST phase 1 trial recently initiated with RP2D of 400 mg QD

In summary, mechanistic and structural understanding of disease-driving mutations paired with tailored inhibitors can accelerate drug development

- KIT/PDGFRα activation loop mutants are unaddressed by approved therapies
- Insights from BPMC library catalyzed design of BLU-285, a potent, highly-selective type 1 inhibitor of KIT/PDGFRα activating mutants
- Potent activity of BLU-285 on KIT/PDGFR activation loop mutants has informed initial clinical development strategy resulting in early clinical proof of concept in several patient populations

Acknowledgements

- Thanks to all participating patients and their families
- Thanks to all study investigators, nurses and research coordinators
 - Abramson Cancer Center at the University of Pennsylvania
 - Dana-Farber Cancer Institute
 - Fox Chase Cancer Center
 - MD Anderson Cancer Center
 - Oregon Health & Science University
 - Stanford University
 - University of Colorado
 - University of Michigan Comprehensive Cancer Center
 - University of Utah, Huntsman Cancer Institute
 - Centre Leon Berard
 - Erasmus MC Cancer institute
 - Gartnavel General Hospital, Beatson West of Scotland Cancer Center
 - Guy's & St Thomas NHS Trust
 - Institut Gustave Roussy
 - Leuven Cancer Institute
 - Royal Marsden Hospital / Institute for Cancer Research
 - University of Essen
- Thanks to our collaborators
 - Michael Heinrich (Oregon Health & Science University)
 - Patrick Schöffski (Leuven Cancer Institute)
- Thanks to all colleagues at Blueprint Medicines