Clinical activity in a Phase 1 study of BLU-285, a potent, highly-selective inhibitor of KIT D816V in advanced systemic mastocytosis

Daniel J. DeAngelo, Albert T. Quiery, Deepti Radia, Mark W. Drummond, Jason Gotlib, William A. Robinson, Elizabeth Hexner, Srdan Verstovsek, Hongliang Shi, Terri Alvarez-Diez, Oleg Schmidt-Kittler, Erica Evans, Mary E. Healy, Beni B. Wolf and Michael W. Deininger
Systemic mastocytosis (SM)

Diagnostic Criteria for systemic mastocytosis

WHO Criteria

• Major (+1 minor)
 Mast cell aggregates (≥ 15) in BM or other tissue

• Minor (or 3 of 4)
 Spindle-shaped mast cells
 c-KIT D816V mutation present
 CD2 or CD25 expression on mast cells
 Serum tryptase > 20 ng/mL

KIT D816V drives systemic mastocytosis

- Indolent (ISM) 16,100 cases
- Smoldering (SSM) 1,800 cases
- Advanced (AdvSM) 2,600 cases

KIT D816V
- Debilitating symptoms
- Organ damage
- ↓Survival

*Represents estimated prevalence in US, EU5, Japan, WHO, World Health Organization; AdvSM, advanced SM; ISM, indolent SM; SSM, smoldering SM

Systemic mastocytosis (SM)

Advanced systemic mastocytosis
ASM, SM-AHN and MCL

Bone and bone marrow*
Liver and spleen†
GI tract‡

C-findings

Osteolytic bone lesions
Cytopenias

Liver function abnormalities,
Ascites, or Hypersplenism

Hypoalbuminemia
Weight loss

BLU-285 was designed to treat systemic mastocytosis

BLU-285 provides highly potent and selective targeting of KIT D816V

<table>
<thead>
<tr>
<th>Kinome selectivity*</th>
<th>BLU-285</th>
<th>Midostaurin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemical IC_{50} (nM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIT D816V</td>
<td>KIT wild type</td>
<td></td>
</tr>
<tr>
<td>BLU-285</td>
<td>0.27</td>
<td>73</td>
</tr>
<tr>
<td>Midostaurin</td>
<td>2.9</td>
<td>26</td>
</tr>
</tbody>
</table>

• Multikinase inhibitor midostaurin is the only approved treatment for AdvSM
• Midostaurin provides CR+PR of 17% per IWG-MRT-ECNM criteria; mPFS 14.1 months

*Reproduced courtesy of Cell Signalling Technology, Inc. (www.cellsignal.com). The website is maintained by CSTI, Blueprint Medicines is not responsible for its content. IC_{50}, concentration causing 50% inhibition; CR, complete response; PR, partial response; IWG-MRT-ECNM, International Working Group-Myeloproliferative Neoplasms Research and Treatment & European Competence Network on Mastocytosis; mPFS, median progression free survival

1. Evans E et al Science Translational Medicine (2017) 1;9(414);
2. Midostaurin US Prescribing information;
Phase 1 study of BLU-285 in advanced systemic mastocytosis: study design

Primary objectives: MTD/RP2D and safety profile
Secondary objectives: pharmacokinetics and preliminary anti-tumor activity

Part 1 (N=32)
Dose escalation completed
AdvSM or refractory myeloid malignancy
Dose levels: 30, 60, 100, 130, 200, 300, 400 mg per day

Part 2*
Dose expansion enrolling
ASM (n=15)
SM-AHN (n=15)
MCL (n=5)

BLU-285 continuous oral once-daily dosing

*As of November 27, 2017, 7 patients have been enrolled in dose expansion (data not shown); MTD, maximum tolerated dose; RP2D, recommended Part 2 dose
Key entry criteria

- Disease entities:
 - Advanced systemic mastocytosis per **WHO diagnostic criteria** via local assessment:
 - One of the following three histologic subtypes:
 - Aggressive systemic mastocytosis
 - Systemic mastocytosis with associated hematologic neoplasm with ≥1 C-finding
 - Mast cell leukemia
 - Relapsed or refractory myeloid malignancy (dose escalation only)
 - Age ≥18 years
 - ECOG performance status 0–3
 - Platelet count ≥ 25 x 10^9 /L
 - ANC ≥ 0.5 x 10^9 /L
 - Adequate hepatic and renal function

WHO Criteria for SM

- **Major**
 - Mast cell aggregates (≥ 15) in BM or other tissue
- **Minor**
 - Spindle-shaped mast cells
 - c-KIT D816V mutation present
 - CD2 or CD25 expression on mast cells
 - Serum tryptase > 20 ng/mL

ANC, absolute neutrophil count; ECOG, Eastern Cooperative Oncology Group.
Baseline characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>All patients (N=32)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age, years (range)</td>
<td>63 (34–83)</td>
</tr>
<tr>
<td>Disease subtype per local assessment, n (%)*</td>
<td></td>
</tr>
<tr>
<td>ASM</td>
<td>17 (53)</td>
</tr>
<tr>
<td>SM-AHN</td>
<td>9 (28)</td>
</tr>
<tr>
<td>MCL</td>
<td>3 (9)</td>
</tr>
<tr>
<td>KIT mutation, n (%)</td>
<td>28 (88)</td>
</tr>
<tr>
<td>High risk mutation positive,(^1,2) n (%)</td>
<td>14 (44)</td>
</tr>
<tr>
<td>ECOG performance status, n (%)</td>
<td></td>
</tr>
<tr>
<td>Median number (range)</td>
<td>27 (84)</td>
</tr>
<tr>
<td>0-1</td>
<td>5 (16)</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Prior anti-neoplastic therapy</td>
<td></td>
</tr>
<tr>
<td>Median number (range)</td>
<td>1 (0-2)</td>
</tr>
<tr>
<td>Any, n (%)</td>
<td>22(^\wedge) (69)</td>
</tr>
<tr>
<td>Midostaurin</td>
<td>4 (13)</td>
</tr>
<tr>
<td>C-findings per WHO Criteria</td>
<td></td>
</tr>
<tr>
<td>Median number (range)</td>
<td>1 (0–4)</td>
</tr>
<tr>
<td>Cytopenias, n (%)</td>
<td>17 (53)</td>
</tr>
<tr>
<td>Hepatomegaly with liver dysfunction</td>
<td>5 (16)</td>
</tr>
<tr>
<td>Hypersplenism</td>
<td>11 (34)</td>
</tr>
<tr>
<td>Malabsorption with weight loss</td>
<td>9 (28)</td>
</tr>
<tr>
<td>Osteolytic bone lesions</td>
<td>6 (19)</td>
</tr>
</tbody>
</table>

*Other, SSM (n=2); telangiectasia macularis eruptive perstans (n=1); \(^\wedge\) Patients could have more than one S/A/R gene mutated, SFSR2 (n=22), ASXL1 (n=7), RUNX1 (n=5). S/A/R, mutations potentially associated with a poorer prognosis\(^1,2\);\(^\wedge\) Prior therapy taken by ≥2 pts, cladribine (n=6), imatinib (n=4), interferon (n=4), midostaurin (n=4), azacitidine (n=3), hydroxyurea (n=2), ibrutinib (n=2)

Data cut-off: 4 Oct 2017

BLU-285 pharmacokinetics (PK) and dose escalation cohorts

Steady state PK

Mean plasma concentration (ng/mL)

<table>
<thead>
<tr>
<th>Dose (mg)</th>
<th>Patients (n)</th>
<th>DLT (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>60</td>
<td>6</td>
<td>1 Grade 3 alk phos</td>
</tr>
<tr>
<td>100</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>130</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>200</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>300</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>400</td>
<td>7</td>
<td>1 Grade 4 vomiting</td>
</tr>
</tbody>
</table>

3+3 dose escalation with enrichment

PK support QD dosing

Steady state $t_{1/2} > 20$ h

Xenograft $IC_{90} = 189$ ng/mL

Mean plasma concentration (ng/mL)

Nominal time (h)

PK support QD dosing

QD, once daily; DLT, dose-limiting toxicity

MTD not reached

300 mg daily selected as the RP2D
Treatment-emergent adverse events

Non-hematological AEs ≥20% (N=32)

<table>
<thead>
<tr>
<th>Adverse event, n (%)</th>
<th>Any grade</th>
<th>≥Grade 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periorbital edema</td>
<td>19 (59)</td>
<td>2 (6)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>13 (41)</td>
<td>2 (6)</td>
</tr>
<tr>
<td>Peripheral edema</td>
<td>11 (34)</td>
<td>0</td>
</tr>
<tr>
<td>Nausea</td>
<td>9 (28)</td>
<td>1 (3)</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>7 (22)</td>
<td>0</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>7 (22)</td>
<td>1 (3)</td>
</tr>
<tr>
<td>Respiratory tract infection</td>
<td>7 (22)</td>
<td>0</td>
</tr>
<tr>
<td>Dizziness</td>
<td>7 (22)</td>
<td>0</td>
</tr>
<tr>
<td>Headache</td>
<td>7 (22)</td>
<td>0</td>
</tr>
</tbody>
</table>

Hematological AEs ≥10% (N=32)

<table>
<thead>
<tr>
<th>Adverse event</th>
<th>Any grade</th>
<th>≥Grade 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anemia</td>
<td>9 (28)</td>
<td>3 (9)</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>9 (28)</td>
<td>2 (6)</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>4 (13)</td>
<td>4 (13)</td>
</tr>
</tbody>
</table>

Most adverse events were CTCAE grade 1 or 2

≥ Grade 3 treatment-related AE in 16 (50%) patients

No deaths on study

30 of 32 patients remain on treatment (Median 9 months [range: 4–19])

1 discontinued due to PD (AML)
1 investigator decision (wild type KIT)
None discontinued due to BLU-285-related AE

AE, adverse event; AML, acute myeloid leukemia; CTCAE, Common Terminology Criteria for Adverse Events; PD, progressive disease

Data cut-off: 4 Oct 2017
Rapid and durable decline in tryptase and KIT D816V variant allele fraction across all dose levels

![Graph showing serum tryptase and blood KIT D816V VAF over time with different dose levels.](image)
Tryptase decrease in all patients

Baseline median 124 µg/L, range 14 to 1414 µg/L
All 32 patients achieved >50% reduction from baseline

* Prior midostaurin + S/A/R positive

• ASM
• SM-AHN
• MCL
• Other

Other, SSM (n=2): telangiectasia macularis eruptiva perstans (n=1)
Bone marrow mast cell decrease in all patients

- Baseline median 20%, range 1.5 to 95%
- ^n=25 evaluable patients with baseline bone marrow mast cells ≥ 5%
- 15/25 (60%) patients achieved bone marrow CR

Other, SSM (n=2); telangiectasia macularis eruptive perstans (n=1)
Spleen volume decrease in all patients

- Baseline median 633 mL, range 130 to 1952 mL
- \(^n=25\) patients with splenomegaly as per central assessment
- 15/25 (60%) patients achieved >35% reduction of spleen volume

* Prior midostaurin + S/A/R positive
ASM SM-AHN MCL Other

* Other, SSM (n=2); telangiectasia macularis eruptive perstans (n=1)
45-year-old female with ASM

*BLU-285 60 mg; remains on treatment at cycle 18 with confirmed PR per IWG-MRT-ECNM

Bone marrow tryptase

Baseline

Cycle 18

~50% MCs

<5% MCs

Colon CD25

Baseline

Cycle 7

>100 MCs/hpf

~100 MCs/hpf

Images courtesy of Dr Deepti Radia, Guy’s and St. Thomas NHS Trust
64-year-old male with MCL

Progressive clearance of bone marrow mast cells

Baseline

Cycle 3

Cycle 7

Bone marrow CD117

*BLU-285 200 mg; remains on treatment at cycle 9 with confirmed PR per IWG-MRT-ECNM
Response analysis per IWG-MRT-ECNM criteria

<table>
<thead>
<tr>
<th>Complete response (CR)<sup>1</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>• No bone marrow mast cell aggregate</td>
</tr>
<tr>
<td>• Serum tryptase <20 ng/mL</td>
</tr>
<tr>
<td>• Peripheral blood count remission</td>
</tr>
<tr>
<td>• Complete resolution of C-findings</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Partial response (PR)<sup>1</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>• ≥50% reduction in bone marrow mast cell aggregate</td>
</tr>
<tr>
<td>• ≥50% reduction in serum tryptase</td>
</tr>
<tr>
<td>• Resolution of 1 or more C-findings</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical improvement (CI)<sup>1</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>• 1 or more response criteria in absence of CR, PR or PD</td>
</tr>
</tbody>
</table>

IWG-MRT-ECNM evaluable patients

Part 1 dose escalation (all dose levels) (n=32)

Patients with AdvSM per WHO diagnostic criteria (n=28)

Patients excluded (n=10)
- n=6 only had osteolytic bone disease at baseline
- n=4 not measurable per IWG-MRT-ECNM criteria at baseline

Patients inevaluable (n=4)
- n=3 non-SM myeloid malignancy
- n=1 KIT WT; discontinued prior to post baseline response assessment

Patients with AdvSM evaluable per IWG-MRT-ECNM criteria¹ (n=18)

WT, wild type; ¹. Gotlib J et al Blood (2013) 121:2393
Best overall response per IWG-MRT-ECNM criteria

<table>
<thead>
<tr>
<th>Best response* n (%) (confirmed and unconfirmed)</th>
<th>ASM (n=7)</th>
<th>SM-AHN# (n=8)</th>
<th>MCL (n=3)</th>
<th>Overall (n=18)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall response rate (CR + PR + CI)</td>
<td>6 (86)</td>
<td>5 (63)</td>
<td>2 (67)</td>
<td>13 (72)</td>
</tr>
<tr>
<td>CR + PR</td>
<td>5 (71)</td>
<td>4 (50)</td>
<td>1 (33)</td>
<td>10 (56)</td>
</tr>
<tr>
<td>Complete response (CR)</td>
<td>2 (29)</td>
<td>0</td>
<td>0</td>
<td>2 (11)</td>
</tr>
<tr>
<td>Partial response (PR)</td>
<td>3 (43)</td>
<td>4 (50)</td>
<td>1 (33)</td>
<td>8 (44)</td>
</tr>
<tr>
<td>Clinical improvement (CI)</td>
<td>1 (14)</td>
<td>1 (13)</td>
<td>1 (33)</td>
<td>3 (17)</td>
</tr>
<tr>
<td>Stable disease (SD)</td>
<td>1 (14)</td>
<td>3 (38)</td>
<td>1 (33)</td>
<td>5 (28)</td>
</tr>
<tr>
<td>Progressive disease (PD)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- 17 of 18 patients remain on treatment with median duration 9 months (range: 4–19)

BLU-285 has potent, clinically important activity in AdvSM

- Data validate *KIT* D816V as a key disease driver
- Selective targeting of *KIT* D816V with BLU-285 is well tolerated
 - 30 of 32 patients remain on treatment with median duration of 9 months (range: 4–19)
 - RP2D is 300 mg once daily, and expansion is ongoing
- BLU-285 demonstrates high preliminary response rates and durable activity
 - 72% ORR (CR + PR + CI) with 56% CR + PR per IWG-MRT-ECNM criteria
- Additional clinical development with BLU-285, now avapritinib, across the spectrum of systemic mastocytosis is planned for 2018
 - Phase 2 trial in AdvSM
 - Dose finding and Phase 2 trial in ISM and SSM
Acknowledgments

• We thank the participating patients, their families, all study co-investigators, and research coordinators at the following institutions:
 – Deepti Radia, Guy’s & St Thomas NHS Trust
 – Mark Drummond, Beatson West of Scotland Cancer Centre
 – Elizabeth Hexner, Abramson Cancer Center at the University of Pennsylvania
 – Albert Quiery, University of Michigan Comprehensive Cancer Center
 – Dan DeAngelo, Dana-Farber Cancer Institute
 – Michael Deininger, University of Utah, Huntsman Cancer Institute
 – Srdan Verstovsek, MD Anderson Cancer Center
 – William Robinson, University of Colorado
 – Jason Gotlib, Stanford Cancer Institute

• We thank Tracy George, Hans Peter Horny, and Maureen Conlan for expert technical analyses

• We also thank Sarah Jackson, PhD, of iMed Comms, an Ashfield company, who provided editorial writing support funded by Blueprint Medicines