Highly potent and selective RET inhibitor, BLU-667, achieves proof of concept in ARROW, a phase 1 study of advanced, RET-altered solid tumors

Vivek Subbiah\(^1\), Matthew Taylor\(^2\), Jessica Lin\(^3\), Mimi Hu\(^1\), Sai-Hong Ignatius Ou\(^4\), Marcia S. Brose\(^5\), Elena Garralda\(^6\), Corinne Clifford\(^7\), Michael Palmer\(^7\), Meera Tugnait,\(^7\) Erica Evans\(^7\), Hongliang Shi\(^7\), Beni Wolf\(^7\), and Justin Gainor\(^3\)

\(^1\)Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, United States;
\(^2\)The Knight Cancer Institute, Oregon Health & Science University, Portland, United States;
\(^3\)Department of Medicine, Massachusetts General Hospital, Boston, United States,
\(^4\)Chao Family Comprehensive Cancer Center, University of California Irvine Medical Center, United States;
\(^5\)Abramson Cancer Center, University Of Pennsylvania, Philadelphia, United States;
\(^6\)Vall d’Hebron Institute of Oncology, Vall d’Hebron University Hospital, Barcelona, Spain;
\(^7\)Blueprint Medicines Corporation, Cambridge, United States;

NCT03037385

©2018 Blueprint Medicines Corporation
Disclosures

I have the following financial relationships to disclose:

Grant/Research support from:

- Blueprint Medicines Corporation
- Novartis International AG
- Bayer AG
- GlaxoSmithKline plc
- NanoCarrier Co. Ltd
- Vegenics Pty Ltd
- Northwest Biotherapeutics
- Boston Biomedical Inc
- Berg
- Incyte Corporation
- Fujifilm Holdings Corporation
- PharmaMar
- D3
- Pfizer Inc
- MultiVir Inc
- Amgen Inc
- AbbVie Inc
- Loxo Oncology
- F. Hoffmann-La Roche AG / Genentech Inc
- National Comprehensive Cancer Network
- National Cancer Institute-Cancer Therapy Evaluation Program

BLU-667 is an investigational agent discovered and currently in development by Blueprint Medicines Corporation (Blueprint Medicines)
Receptor tyrosine kinase, \textit{RE}arranged during \underline{Transfection} (\textit{RET})

Normal RET signaling

GDNF ligand

RET Receptor Tyrosine Kinase

\(\alpha1\)

TK1

TK2

\(\bullet\)

\(\checkmark\)

Organ development and tissue homeostasis
Receptor tyrosine kinase, **REarranged during Transfection (RET)**

Organ development and tissue homeostasis

Normal RET signaling

- GDNF ligand
- RET Proto-oncogene
- GFRα1
- TK1
- TK2
- RAS/RAF/MEK/ERK
- ✓

Oncogenic RET signaling

- Activating RET mutations*
- C620/C634
- V804L/M
- M918T
- Dimeric RET fusions
 - KIF5B-, CCDC6-, NCOA4, TRIM-33-
 - and more partners

Tumorigenesis
RET is a rare driver of multiple, diverse tumor types1,2

- Medullary thyroid cancer: >60% RET-mutations
- Papillary thyroid cancer: ~10% RET-fusions
- Non-small cell lung cancer: ~1-2% RET-fusions

Other tumor types ≤1% RET-altered

- Esophageal cancer
- Breast cancer
- Melanoma
- Colorectal cancer
- Leukemia

Patients with *RET*-alterations have not benefited from precision oncology.

Precision oncology

Non-small cell lung cancer

- **EGFR mutation**
- **ALK-fusion**
- **ROS-fusion**

Selective RTK inhibitors

- **↑Activity and ↓off-target toxicity**

Typical ORR >60%
Typical PFS >9 months
Favorable tolerability

MKI, multikinase inhibitors; MTC, medullary thyroid cancer; NSCLC, non-small cell lung cancer; ORR, overall response rate; PFS, progression-free survival; RTK, receptor tyrosine kinase

Patients with *RET*-alterations have not benefited from precision oncology

Precision oncology

Non-small cell lung cancer

- **EGFR mutation**
- **ALK-fusion**
- **ROS-fusion**

- Selective RTK inhibitors¹
 - ↑Activity and ↓off-target toxicity

 - Typical ORR >60%
 - Typical PFS >9 months
 - Favorable tolerability

Current “non-targeted” paradigms for RET

NSCLC

- RET- fusion
- Chemotherapy
- Immunotherapy
- Multikinase inhibitors

- Typical ORR <30%
- Typical PFS ~4.6 – 7.3 months

MTC

- RET-mutation
- Multikinase inhibitors

- Typical ORR 25-45%
- Typical PFS ~11-30 months

Refractory solid tumor

- RET-fusion
- No standard of care

MKI, multikinase inhibitors; MTC, medullary thyroid cancer; NSCLC, non-small cell lung cancer; ORR, overall response rate; PFS, progression-free survival; RTK, receptor tyrosine kinase

BLU-667 was designed to treat RET-altered cancers

Subnanomolar potency\(^1\)

<table>
<thead>
<tr>
<th>Variant</th>
<th>Biochemical IC(_{50}) (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RET wildtype</td>
<td>0.4</td>
</tr>
<tr>
<td>RET V804L</td>
<td>0.3</td>
</tr>
<tr>
<td>RET V804M</td>
<td>0.4</td>
</tr>
<tr>
<td>RET M918T</td>
<td>0.4</td>
</tr>
<tr>
<td>CCDC6-RET</td>
<td>0.4</td>
</tr>
</tbody>
</table>

More Potent than MKI

Kinome selectivity for RET

Kinome illustration reproduced courtesy of Cell Signaling Technology, Inc. (CSTI) (www.cellsignal.com). The foregoing website is maintained by CSTI, and Blueprint Medicines is not responsible for its content.

1. Subbiah V et al. *Cancer Discovery* April 15 2018
BLU-667 potently inhibits RET-driven tumor growth

KIF5B-RET NSCLC patient-derived xenograft

Potent Pathway inhibition

BID, two times per day; QD, once daily

1. Subbiah V et al. Cancer Discovery April 15 2018
BLU-667 ARROW first-in-human study

Part 1: Dose escalation – completed

Opened March 2017

Advanced RET-altered solid tumors
 • BOIN design
 • BLU-667 orally QD continuous

MTD

Part 2: Dose expansion – enrolling

NSCLC
 Failed prior kinase inhibitor

NSCLC
 No prior kinase inhibitor

Medullary Thyroid Cancer

Other RET-altered solid tumors

Key objectives

• MTD, safety, pharmacokinetics, pharmacodynamics, anti-tumor activity

BOIN, Bayesian optimal interval; MTD, maximum tolerated dose
<table>
<thead>
<tr>
<th>Parameter</th>
<th>(N=53)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years; median (range)</td>
<td>56 (19-83)</td>
</tr>
<tr>
<td>Sex, male; n (%)</td>
<td>30 (57)</td>
</tr>
<tr>
<td>ECOG PS; n (%)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>21 (40)</td>
</tr>
<tr>
<td>1</td>
<td>32 (60)</td>
</tr>
<tr>
<td>Metastatic disease; n (%)</td>
<td>50 (94)</td>
</tr>
<tr>
<td>Tumor type; n (%)</td>
<td></td>
</tr>
<tr>
<td>RET-alteration</td>
<td>51 (96)</td>
</tr>
<tr>
<td>Medullary thyroid cancer</td>
<td>29 (55)</td>
</tr>
<tr>
<td>Non-small cell lung cancer</td>
<td>19 (36)</td>
</tr>
<tr>
<td>Papillary thyroid cancer</td>
<td>2 (4)</td>
</tr>
<tr>
<td>Retroperitoneal Paraganglioma</td>
<td>1 (2)</td>
</tr>
<tr>
<td>Non-RET altered solid tumor</td>
<td>2 (4)</td>
</tr>
<tr>
<td>Prior systemic therapy; n (%)</td>
<td>41 (77)</td>
</tr>
<tr>
<td>Multikinase inhibitor; n (%)</td>
<td>27 (51)</td>
</tr>
<tr>
<td>Chemotherapy; n (%)</td>
<td>19 (36)</td>
</tr>
<tr>
<td>Immunotherapy; n (%)</td>
<td>18 (34)</td>
</tr>
<tr>
<td># of lines, median (range)</td>
<td>1 (0-8)</td>
</tr>
</tbody>
</table>

ECOG PS, Eastern Cooperative Oncology Group performance score

Data cut-off: April 6, 2018
Diverse RET genotypes enrolled

RET Mutations
- M918T 72%
- Other RET 10%
- V804M 4%
- C634R 7%

RET Fusions
- KIF5B 63%
- CCDC6 21%
- KIAA 1468- 5%
- RET FISH+ 11%

Medullary thyroid cancer N=29
- Non-small cell lung cancer N=19

Paraganglioma N=1
- RET R77H

Papillary thyroid cancer N=2
- CCDC6-RET 100%

Data cut-off: April 6, 2018
Dose escalation results

<table>
<thead>
<tr>
<th>Dose (mg QD)</th>
<th># Evaluable (N=49)</th>
<th>Dose limiting toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>1</td>
<td>None</td>
</tr>
<tr>
<td>60</td>
<td>6</td>
<td>None</td>
</tr>
<tr>
<td>100</td>
<td>5</td>
<td>Alanine transaminase increased (1)</td>
</tr>
<tr>
<td>200</td>
<td>12</td>
<td>None</td>
</tr>
</tbody>
</table>
| 300 | 11 | Tumor lysis syndrome (1)
| | | Hypertension (1) |
| 400 | 10 | Asthenia (1)
| | | Hypertension (1) |
| 600 | 4 | Hyponatremia (1)
| | | Hypertension (1) |

Maximum Tolerated Dose – 400 mg QD

41 of 53 patients remain on treatment (median 3.9 months [range: 0.3–11.5])

ALT, alanine aminotransferase

Data cut-off: April 6, 2018
Dose-dependent exposure and RET pathway inhibition

Steady-state Pharmacokinetics

Tumor Pharmacodynamics

- RET → MEK → ERK → DUSP6 / SPRY4

Percentage reduction in DUSP6 and SPRY4 vs Baseline

- BLU-667 mean plasma concentration (ng/mL)
- Time (h)
- Plasma IC\textsubscript{90}
- Brain IC\textsubscript{90}

30 mg QD 60 mg QD 100 mg QD 200 mg QD 300 mg QD 400 mg QD 600 mg QD
Dose-dependent decline in MTC tumor markers

Carcinoembryonic antigen (CEA)

Calcitonin

% reduction in CD21

Data cut-off: April 6, 2018
Potent activity against highly invasive RET-mutant MTC

27-year-old male; RET L629-D361 Del; initiated at 60 mg; ongoing at 400 mg with confirmed PR
Potent activity against KIF5B-RET NSCLC – post chemotherapy

Baseline

Month 4

FISH

Breakpoint

KIF5B
10p11.22

RET
10q11.21

FUSION

KIF5B Exons 1-15
Chr10:32315000

RET Exons 12-20
Chr10:43610000

Reduction in Tumor
cT DNA (% Baseline)

TP53 cDNA
KIF5B cDNA
Tumor

37-year-old female; ongoing at 400 mg with confirmed PR

Subbiah V et al. Cancer Discovery April 15 2018
Potent activity against KIF5B-RET NSCLC – post-vandetinib+everolimus

Baseline

First Assessment (Month 2)

74-year-old male; initiated at 300 mg; ongoing at 400 mg; PR at month 5 pending confirmation Subbiah V et al. Cancer Discovery April 15 2018
Activity against KIF5B-RET NSCLC brain metastases

Baseline

First assessment (Month 2)

69-year-old male; initiated at 400 mg; ongoing at month 4

Images courtesy of Drs of Gainor, J and Lin, J of MGH
BLU-667 has broad anti-tumor activity against RET-altered cancers

Data cut-off: April 6, 2018

C, prior chemotherapy; CR, complete response; I, prior immunotherapy; M, prior MKI therapy; MKI, multikinase inhibitor; PD, progressive disease; PR, partial response; SD, stable disease

<table>
<thead>
<tr>
<th>Best Response</th>
<th>Evaluable Patients (N=40) n, (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR*</td>
<td>1 (3)</td>
</tr>
<tr>
<td>PR**</td>
<td>17 (43)</td>
</tr>
<tr>
<td>SD</td>
<td>20 (50)</td>
</tr>
<tr>
<td>PD</td>
<td>2 (5)</td>
</tr>
</tbody>
</table>

* confirmed ** 10 confirmed, 7 pending confirmation
BLU-667 has durable activity and high response rate in RET-altered NSCLC

<table>
<thead>
<tr>
<th>Best Response</th>
<th>Evaluable Patients (N=14); n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>0</td>
</tr>
<tr>
<td>PR*</td>
<td>7 (50)</td>
</tr>
<tr>
<td>SD</td>
<td>5 (36)</td>
</tr>
<tr>
<td>PD</td>
<td>2 (14)</td>
</tr>
</tbody>
</table>

* 5 confirmed, 2 pending confirmation

Data cut-off: April 6, 2018
BLU-667 has durable activity and high response rate in RET-altered MTC

Prior Therapy

Treatment duration:
Median 4.7 months
Range 0.5–11.5 months
25/29 (86%) on treatment

Best Response	Evaluable Patients; (N=25) N (%)
CR* | 1 (4) |
PR** | 9 (36) |
SD | 15 (60) |
PD | 0 |

*confirmed;**5 confirmed, 4 pending confirmation

Data cut-off: April 6, 2018
BLU-667 is well tolerated

Treatment-emergent Adverse Events ≥10% per CTCAE
(30-400 mg Safety Population, N=49)

<table>
<thead>
<tr>
<th>Adverse event, n (%)</th>
<th>Grade 1</th>
<th>Grade 2</th>
<th>Grade 3</th>
<th>Grade 4/5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constipation</td>
<td>10 (20)</td>
<td>2 (4)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ALT increased</td>
<td>10 (20)</td>
<td>0</td>
<td>1 (2)</td>
<td>0</td>
</tr>
<tr>
<td>AST increased</td>
<td>8 (16)</td>
<td>2 (4)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hypertension</td>
<td>2 (4)</td>
<td>2 (4)</td>
<td>4 (8)</td>
<td>0</td>
</tr>
<tr>
<td>Fatigue</td>
<td>5 (10)</td>
<td>1 (2)</td>
<td>1 (2)</td>
<td>0</td>
</tr>
<tr>
<td>Edema peripheral</td>
<td>6 (12)</td>
<td>1 (2)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>4 (8)</td>
<td>1 (2)</td>
<td>1 (2)</td>
<td>0</td>
</tr>
<tr>
<td>Blood creatinine increased</td>
<td>6 (12)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hyperphosphatemia</td>
<td>4 (8)</td>
<td>2 (4)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Headache</td>
<td>5 (10)</td>
<td>1 (2)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Leukopenia</td>
<td>5 (10)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>2 (4)</td>
<td>1 (2)</td>
<td>2 (4)</td>
<td>0</td>
</tr>
<tr>
<td>White blood cell decreased</td>
<td>2 (4)</td>
<td>2 (4)</td>
<td>1 (2)</td>
<td>0</td>
</tr>
<tr>
<td>Insomnia</td>
<td>5 (10)</td>
<td>2 (4)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cough</td>
<td>3 (6)</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Most adverse events were Grade 1

8 (16%) patients had Grade 3 treatment-related AE

No Grade 4/5 treatment-related AEs

AE, adverse event; ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; CTCAE, common terminology criteria for adverse events

Data cut-off: April 6, 2018
Conclusions

• BLU-667 delivers:
 – Potent RET pathway inhibition with favorable tolerability
 – Broad anti-tumor activity regardless of RET genotype, indication and prior therapy
 – High preliminary response rates and durable activity
 – ORR: RET-fusion NSCLC 50%
 – ORR: RET-mutant MTC 40%
 – ORR: RET-fusions and mutations (NSCLC, MTC and PTC) 45%
 – 41 of 51 RET-altered patients remain on treatment

• ARROW dose escalation data validate BLU-667 as a promising precision therapy for RET-altered cancers

• ARROW dose expansion is open and enrolling globally

• BLU-667 manuscript published today in Cancer Discovery
 – Foundational preclinical work and clinical translation

Data cut-off: April 6, 2018
Acknowledgements

• We thank the participating patients, their families, all study co-investigators, and research co-ordinators at the following institutions:

 – Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, United States
 – The Knight Cancer Institute Oregon Health & Science University Portland, United States
 – Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, United States
 – Chao Family Comprehensive Cancer Center University of California Irvine Medical Center, United States
 – Abramson Cancer Center, University Of Pennsylvania, United States
 – Vall d’Hebron Institute of Oncology Vall d’Hebron University Hospital, Barcelona, Spain